Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.02.09.579628

ABSTRACT

Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and causes local respiratory symptoms. It has been reported that HCoV-229E can cause cell death in a variety of cells in vitro. However, the molecular pathways that lead to virus-induced cell death remain poorly characterized. Here, we show that the main protease (Mpro) of HCoV-229E can cleave the pyroptosis executioner gasdermin D (GSDMD) within its active N-terminal domain at two different sites (Q29 and Q193) to generate fragments unable to cause pyroptosis. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection leads to lytic cell death. We further demonstrate that virus-induced lytic cell death is partially dependent on the activation of caspases-3 and -8. Interestingly, inhibition of caspases does not only reduce lytic cell death upon infection, but also sustains the release of virus particles over time, which suggests that caspase-mediated cell death is a mechanism to limit virus replication and spread. Finally, we show that pyroptosis is partially dependent on another gasdermin family member, gasdermin E (GSDME). During HCoV-229E infection, GSDME is cleaved to yield its N-terminal pore-forming domain (p30). Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus, whereas this is not the case for GSDMD knockout cells, which aligns with the observation that GSDMD is also inactivated by caspase-3 during infection. These results suggest that GSDMD is inactivated during HCoV-229E infection, and point to GSDME as an important player in the execution of virus-induced cell death.


Subject(s)
Respiratory Tract Infections , Hepatitis D , Coronaviridae Infections
SELECTION OF CITATIONS
SEARCH DETAIL